46,240 research outputs found

    Compact Binaries as Sources of Gravitational Radiation

    Get PDF
    With current terrestrial gravitational wave detectors working at initial design sensitivities, and upgrades and space missions planned, it is likely that in the next five to ten years gravitational radiation will be detected directly from a variety of classes of objects. The most confidently expected of these classes is compact binaries, involving neutron stars or black holes. Detection of their coalescence, or their long-term orbits, has the potential to inform us about the evolutionary history of compact binaries and possibly even star formation over the past several billion years. We review what is currently known about compact binaries as sources of gravitational radiation, as well as the current uncertainties and what we expect to learn from future detections of gravitational waves from these systems.Comment: To appear in the proceedings of the meeting "The Multicoloured Landscape of Compact Objects and their Explosive Origins", Cefalu, Italy, June 2006, to be published by AIP, Eds. L. Burderi et a

    Beat-Frequency Models of Kilohertz QPOs

    Get PDF
    Kilohertz QPO sources are reasonably well-characterized observationally, but many questions remain about the theoretical framework for these sources and the consequent implications of the observations for disk physics, strong gravity, and dense matter. We contrast the predictions and implications of the most extensively studied class of kilohertz QPO models, the beat-frequency models, with those of alternative classes of models. We also discuss the expected impact of new observations of these sources with satellites such as Chandra, XMM, and Constellation-X.Comment: 10 pages, invited paper at Bologna X-ray Astronomy 1999. To appear in Astrophysical Letters and Communication

    Electron Cotunneling into a Kondo Lattice

    Full text link
    Motivated by recent experimental interest in tunneling into heavy electron materials, we present a theory for electron tunneling into a Kondo lattice. The passage of an electron into the Kondo lattice is accompanied by a simultaneous spin flip of the localized moments via cotunneling mechanism. We compute the tunneling current with the large-NN mean field theory. In the absence of disorder, differential tunneling conductance exhibits two peaks separated by the hybridization gap. Disorder effects lead to the smearing of the gap resulting in a Fano lineshape.Comment: 4 pages, 2 eps figure

    Generation of orthogonal boundary-fitted coordinate systems

    Get PDF
    A method is presented for computing orthogonal boundary fitted coordinate systems for geometries with coordinate distributions specified on all boundaries. The system which has found most extensive use in generating boundary fitted grids is made up of Poisson equations, of which the functions P and Q provide a means for controlling the spacing and density of grid lines in the coordinate system. While questions remain concerning the existence and uniqueness of orthogonal systems, the generating method presented adds to the available, useful techniques for constructing these systems
    • …
    corecore